The transformations are:
order=1:
e = [E0 E1][1].[1]
[E2 0][e] [n]
n = [N0 N1][1].[1]
[N2 0][e] [n]
e = [E0 E1 E3][1 ] [1 ]
[E2 E4 0][e ].[n ]
[E5 0 0][e²] [n²]
n = [N0 N1 N3][1 ] [1 ]
[N2 N4 0][e ].[n ]
[N5 0 0][e²] [n²]
e = [E0 E1 E3 E6][1 ] [1 ]
[E2 E4 E7 0][e ].[n ]
[E5 E8 0 0][e²] [n²]
[E9 0 0 0][e³] [n³]
n = [N0 N1 N3 N6][1 ] [1 ]
[N2 N4 N7 0][e ].[n ]
[N5 N8 0 0][e²] [n²]
[N9 0 0 0][e³] [n³]
In other words, order=1 and order=2 are equivalent to order=3 with the higher coefficients equal to zero.
Last changed: $Date: 2013-02-20 11:16:02 +0100 (Wed, 20 Feb 2013) $